
„Compact“ Laser Beam Stabilization
Communication Protocol - Explanations

1. Introduction
The Laser Beam Stabilization system can be controlled via a preconfigured interface: USB for easy use, R232
for rough environments and Ethernet e.g. for system integration are available. All interfaces make use of the
same communication protocol. This document explains the protocol, the utilization via a serial terminal and
the integration into your source code.

2. Protocol
The communication protocol was developed to achieve high speeds and the associated data rates. It is
based on a combination of ASCII characters and hexadecimal (HEX) numbers that are transmitted and
received. Depending on the request to the Laser Beam Stabilization, you receive a different answer, which
can consist of ASCII characters and hexadecimal numbers. Therefore it is important to always check in the
specification what kind of response you can expect.

As a simple example you can see the request for the active status of the system in figure 1. Here we send
GAS; (Get Active Signal) over the interface. The command consists of three ASCII characters and is
terminated by a semicolon. As a response we receive a confirmation that the command was understood,
symbolized by a 0 (hexadecimal number) and a semicolon (ASCII). Afterwards we get two bytes with the
payload followed by a second semicolon terminating the response.

To understand the response in the payload, you need to look up the specification in the protocol. In the case
of GAS; we expect two hexadecimal numbers in unsigned char format, which means one byte each. The first
byte of the payload represents the first stage, the second byte represents the second stage. In the case of
the example, stage 1 is inactive (0) and the second stage is active (1).

Figure 1: Get active status (GAS) command

Some commands require data to be sent to the Laser Beam Stabilization system. These commands are
similar to those that consist of only a request. You can see an example of a request for data in the example
in figure 2. It shows you can see the request to move the target position of the detector in x on the first
control stage. The command is SAI followed by the axis, the control stage and the target position followed
by a semicolon. The command starts with three ASCII characters followed by the payload and a semicolon
as the termination. The answer consists of just the acknowledgement (0x00 followed by a semicolon), as
there is no payload to be transferred.

01/2024 www.mrc-systems.de Page 1

„Compact“ Laser Beam Stabilization
Communication Protocol - Explanations

3. Errors
In contrast to the acknowledgement, the Laser Beam Stabilization system sends back a 1 (hexadecimal
number) followed by a semicolon each time an error occurred. To invoke on the cause of the error, the
command GER; can be used. It returns the name of the command that provoked the error followed by one
signed char as a hexadecimal number that acts as an error code. These error codes are explained in section
3 of the protocol.

4. Data streaming
In order not to ask for each data package separately, there is the option to start a continuous data stream.
During a stream, however, no further commands can be sent, as otherwise it would not be possible to
distinguish between the data stream and the response to this request. The command SLS; starts a data
stream, which can be automatically stopped after a specified number of packages were sent, but can also
run indefinitely. In this case you will receive data records permanently until you terminate the stream with
the command CLS;.

The data packages of a stream always consist of the same components and contain all important
information about position, intensity, status and piezo voltages. Figure 3 shows a data package with
example values.

Since a CLS; command can arrive at the beam stabilization system at the same time as a data package is
sent, there is a special bit in the status byte that marks the last package of the stream. Once the command
has been processed, the first bit in the status byte is set to 1 followed by the remaining data of this stream
package. After the stream ended, a 0 (hexadecimal number) and semicolon (ASCII) are sent as a
confirmation.

01/2024 www.mrc-systems.de Page 2

Figure 2: Set adjust in command

Figure 3: Data stream example

„Compact“ Laser Beam Stabilization
Communication Protocol - Explanations

5. Application via serial terminal

Using the protocol via a serial terminal is in principle possible, but requires correct settings and the
possibility to transfer hexadecimal numbers to get the communication working. To open a connection you
have to make sure that you set the correct parameters for the interface. You can find the factory settings in
table 1.

Parameter Value
Baudrate [bits/s] 115200 (for USB and RS232)
Data bits 8
Parity no
Stop bit 1
Handshaking on
Flow control hardware

Table 1: Parameters for the interface

Once you have opened a connection, you must make sure that the received data are shown as hexadecimal
numbers, otherwise you will most likely be unable to understand the response to certain requests.

When entering a command in the input field you have to take care that the commands can partially consist
of ASCII characters mixed with hexadecimal numbers. You must therefore switch between the two or
convert the ASCII characters into hexadecimal numbers beforehand.

As a first example you can see the request for a single data package in figure 4. Here, the request can be
sent with only ASCII characters, because there is no payload afterwards. The output is set to hexadecimal
numbers, because the data package contains numerical values. As you can see in figure 4, the response is
quite compact compared to sending the numerical values as ASCII characters, so that higher data transfer
rates can be achieved.

01/2024 www.mrc-systems.de Page 3

Figure 4: Command via serial terminal (CuteCom)

„Compact“ Laser Beam Stabilization
Communication Protocol - Explanations

In the second example we set the P factor of the first stage to 1 Volt. Since the command now consists of a
mixture of numerical values and ASCII characters, we have translated the ASCII characters SPF into the
hexadecimal value 0x535046 and then added the stage 0x01 and voltage 0x03E8 followed by the semicolon
which translates to 0x3b. Combined, this results in the command 0x5350460103E83b, which is shown in
figure 5.

01/2024 www.mrc-systems.de Page 4

Figure 5: Set P factor (SPF) via a serial terminal

„Compact“ Laser Beam Stabilization
Communication Protocol - Explanations

6. Implementation in source code
When implementing the protocol in your own source code, you can manage the interface by yourself. Doing
so, the settings from table 1 must be applied, if it is a serial device. With an Ethernet system, you can
connect with the Ethernet address¹ of the system.

After the connection is opened, you can transfer data to the Laser Beam Stabilization system as described in
section 2. It is possible to use an array in which you enter the commands and the payload and then transmit
them via the interface. After a short waiting period you should be able to read back the response from the
Laser Beam Stabilization system via the interface. It is advised to wait until you have received the specified
number of bytes as an answer to your request. In addition to examining the length of the received answer
you should also check whether you received the acknowledgement (0x00 followed by a semicolon). By that
you can be sure to have received a complete and valid answer before issuing the next request.

When utilizing an indefinite data stream, you must make sure that you have a termination criterion. Once
this criterion occurs, you can stop the stream with the CLS; command. If you do not implement such a
criterion, the Laser Beam Stabilization system will continue to stream data until it is manually stopped or
the power is turned off. This can cause problems if you restart your program and want to send a request. In
this case you will get unexpected data from the stream instead of the desired response or reaction to your
request.

In the following section you will find a simple example in C for a USB system. In the example, the connection
is opened and various commands and options are used to illustrate the implementation.

1: The Laser Beam Stabilization systems equipped with an Ethernet interface are delivered in the DHCP
configuration. If the device is to be connected without a DHCP server, the WIZS2E ConfigTool can be used to
set a static IP address.

Contact
MRC Systems GmbH
Hans-Bunte-Str. 10
D-69123 Heidelberg, Germany
Phone: +49 6221/13803-00
Email: info@mrc-systems.de Subject to change.

01/2024 www.mrc-systems.de Page 5

M
RC

-0
12

4-
1-

e

„Compact“ Laser Beam Stabilization
Communication Protocol - Explanations

7. C example for a USB device

01/2024 www.mrc-systems.de Page 6

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <termios.h>
#include <unistd.h>
#include <algorithm>

//function to display an error message
void error(const char *msg)
{
 perror(msg);
 exit(0);
}

//function to apply the parameters of the interface (see table 1 in description of the serial_interface)
//as parameters we get the interface to open (fd), the baudrate we want (speed) and the bit parity of the protocol
int set_interface_attribs (int fd, int speed, int parity)
{
 //first we setup the memory where we save the parameters
 struct termios tty;
 memset (&tty, 0, sizeof tty);
 if (tcgetattr (fd, &tty) != 0) //we check if the memory is available
 {
 error("ERROR from tcgetattr");
 return -1;
 }

 //we set the paramters to the memory first and apply them afterwards
 cfsetospeed (&tty, speed);
 cfsetispeed (&tty, speed);
 tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8; // 8-bit chars
 // disable IGNBRK for mismatched speed tests; otherwise receive break
 // as \000 chars
 tty.c_iflag &= ~IGNBRK; // disable break processing
 tty.c_lflag = 0; // no signaling chars, no echo,
 // no canonical processing
 tty.c_oflag = 0; // no remapping, no delays
 tty.c_cc[VMIN] = 0; // read doesn't block
 tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout

 tty.c_iflag &= ~(IXON | IXOFF | IXANY); // shut off xon/xoff ctrl

 tty.c_cflag |= (CLOCAL | CREAD);// ignore modem controls,
 // enable reading
 tty.c_cflag &= ~(PARENB | PARODD); // shut off parity
 tty.c_cflag |= parity;
 tty.c_cflag &= ~CSTOPB;
 tty.c_cflag &= ~CRTSCTS;

 if (tcsetattr (fd, TCSANOW, &tty) != 0) //setting the values to the interface
 {
 error("ERROR from tcsetattr");
 return -1;
 }
 return 0;
}

„Compact“ Laser Beam Stabilization
Communication Protocol - Explanations

01/2024 www.mrc-systems.de Page 7

//function to enable/disable the mode of the interface
void set_blocking (int fd, int should_block)
{
 //allocating the memory for the configuration
 struct termios tty;
 memset (&tty, 0, sizeof tty);

 if (tcgetattr (fd, &tty) != 0) //checking if memory allocation was successful
 {
 error("ERROR from tggetattr");
 return;
 }

 //setting the variable to the memory
 tty.c_cc[VMIN] = should_block ? 1 : 0;
 tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout

 //apply
 if (tcsetattr (fd, TCSANOW, &tty) != 0)
 error("ERROR setting term attributes");
}

int main()
{
 ///--------------------------------------Init---

 //here we connect to the serial port
 int serial_port = open("/dev/ttyUSB0", O_RDWR | O_NOCTTY | O_SYNC);

 //check for errors
 if(serial_port < 0)
 printf("Error %i from open: %s\n", errno, strerror(errno));

 set_interface_attribs (serial_port, B115200, 0); // set speed to 115,200 bps, 8n1 (no parity)
 set_blocking (serial_port, 0); // set no blocking

 ///-------------------------Communication start---

 char bufferOut[256];
 char bufferIn[256];
 long check;

 //First we clear old data on the system

 ///***Writing***
 strcpy(bufferOut,"CLS;"); //Creating the message - "CLS" = Clear Live Stream
 check = write(serial_port, bufferOut, 4); //writing on the socket (4 = length of symbols)
 if (check < 0) //checking the result
 error("ERROR writing to socket");

 usleep(10000); //we sleep here 10 milliseconds to allow the system to respond (latency via data transfer)

 ///***Reading***
 bzero(bufferIn,256); //cleaning the storage
 check = read(serial_port, bufferIn, sizeof(bufferIn)); //read from the serial port
 if (check < 0) //checking the result
 error("ERROR reading from socket");

„Compact“ Laser Beam Stabilization
Communication Protocol - Explanations

01/2024 www.mrc-systems.de Page 8

 ///--------------------------------get board id--

 //Now we can communicate with the system

 ///***Writing***
 bzero(bufferOut,256); //cleaning the message
 strcpy(bufferOut,"GID;"); //Creating the message "GID" = Get Identifier
 check = write(serial_port, bufferOut, 4); //writing on the socket (4 = length of symbols)
 if (check < 0) //checking the result
 error("ERROR writing to socket");

 usleep(10000); //we sleep here 10 milliseconds to allow the system to respond (latency via data transfer)

 ///***Reading***
 bzero(bufferIn,256); //cleaning the storage
 check = read(serial_port, bufferIn, sizeof(bufferIn)); //read from the serial port
 if (check < 0) //checking the result
 error("ERROR reading from socket");

 //Searching for the “;” at the end
 char* data = std::find(bufferIn, bufferIn + sizeof(bufferIn) / sizeof(bufferIn[0]),0x3b);
 printf("%s\n", data);

 ///------------------------------------activating the stage---

 ///***Parameters***
 char stage = static_cast<char>(0x01); //Stage 1

 ///***Writing***
 bzero(bufferOut,256); //cleaning the message

 strcpy(bufferOut,"SEA"); //Creating the message "SEA" = Set external activation
 strcat(bufferOut,&stage); //Choosing the stage
 strcat(bufferOut, ";");

 check = write(serial_port, bufferOut, 5); //writing on the socket (4 = length of symbols)
 if (check < 0) //checking the result
 error("ERROR writing to socket");

 usleep(10000); //we sleep here 10 milliseconds to allow the system to respond (latency via data transfer)

 ///***Reading***
 bzero(bufferIn,256); //cleaning the storage
 check = read(serial_port, bufferIn, sizeof(bufferIn)); //read from the serial port
 if (check < 0) //checking the result
 error("ERROR reading from socket");

 if(bufferIn[0] == 0 && bufferIn[1] == 0x3b)
 printf("Stage 1 is activated.\n");
 else
 printf("Stage 1 couldn't be activated.\n");

„Compact“ Laser Beam Stabilization
Communication Protocol - Explanations

01/2024 www.mrc-systems.de Page 9

 ///--------------------------------------a single stream block--

 ///***Writing***
 bzero(bufferOut,256); //cleaning the message
 strcpy(bufferOut,"S1S;"); //Creating the message "S1S" = SingleShot
 check = write(serial_port, bufferOut, 4); //writing on the socket (4 = length of symbols)
 if (check < 0) //checking the result
 error("ERROR writing to socket");

 usleep(10000); //we sleep here 10 milliseconds to allow the system to respond (latency via data transfer)

 ///***Reading***
 bzero(bufferIn,256); //cleaning the storage
 check = read(serial_port, bufferIn, sizeof(bufferIn)); //read from the serial port
 if (check < 0) //checking the result
 error("ERROR reading from socket");

 //anaylsing the stream block
 if(bufferIn[0] == 0 && bufferIn[1] == 0x3b) //Checking if acknowledgement was sent
 {
 int status_flag = bufferIn[2];
 bool on1 = status_flag & 8;
 bool on2 = status_flag & 16;
 bool active1 = status_flag & 32;
 bool active2 = status_flag & 64;

 //each value is separated in two char values. Shifting the first value up and adding the second to get correct result
 int position_X1 = (bufferIn[4] << 8) + (bufferIn[5] & 0xFF);
 int position_Y1 = (bufferIn[6] << 8) + (bufferIn[7] & 0xFF);
 int power_I1 = (bufferIn[8] << 8) + (bufferIn[9] & 0xFF);
 int position_X2 = (bufferIn[10] << 8) + (bufferIn[11] & 0xFF);
 int position_Y2 = (bufferIn[12] << 8) + (bufferIn[13] & 0xFF);
 int power_I2 = (bufferIn[14] << 8) + (bufferIn[15] & 0xFF);
 int range_X1 = (bufferIn[16] << 8) + (bufferIn[17] & 0xFF);
 int range_Y1 = (bufferIn[18] << 8) + (bufferIn[19] & 0xFF);
 int range_X2 = (bufferIn[20] << 8) + (bufferIn[21] & 0xFF);
 int range_Y2 = (bufferIn[22] << 8) + (bufferIn[23] & 0xFF);

 //displaying result
 printf("\n");

 if(on1 && active1)
 printf("Stage 1 is stabilizing: \n");
 printf("Position Stage 1 (x, y): %d,%d \n", position_X1, position_Y1);
 printf("Range Stage 1 (x, y): %d,%d \n\n", range_X1, range_Y1);

 if(on2 && active2)
 printf("Stage 2 is stabilizing: \n");
 printf("Position Stage 2 (x, y): %d,%d \n", position_X2, position_Y2);
 printf("Range Stage 2 (x, y): %d,%d \n\n", range_X2, range_Y2);

 printf("Detector Intensity (Stage1, Stage2): %d,%d \n\n", power_I1, power_I2);
 }
 else
 printf("Acknowledgement wasn’t sent\n\n");

„Compact“ Laser Beam Stabilization
Communication Protocol - Explanations

01/2024 www.mrc-systems.de Page 10

 //-----------------------------set adjust values on stage 1 x to 0---

 ///***Parameters***
 stage = static_cast<char>(0x01); // Stage 1
 char axis = static_cast<char>('x'); // Axis X
 char adj_val_high = static_cast<char>(0x00);
 char adj_val_low = static_cast<char>(0x00);

 ///***Writing***
 bzero(bufferOut,256); //cleaning the message

 strcpy(bufferOut,"SAI"); //Creating the message "SAI" = Set adjust in
 strcat(bufferOut,&stage); //Choosing the stage
 strcat(bufferOut,&axis); //Choosing the axis
 strcat(bufferOut, &adj_val_high);
 strcat(bufferOut, &adj_val_low);

 char* p_bufferOut = bufferOut;
 memmove(p_bufferOut + 7, ";",1); //we need to insert the end of the command, because "0" is not recognized by strcat()

 check = write(serial_port, bufferOut, 8); //writing on the socket (8 = length of symbols)

 if (check < 0) //checking the result
 error("ERROR writing to socket");

 usleep(10000); //we sleep here 10 milliseconds to allow the system to respond (latency via data transfer)

 ///***Reading***
 bzero(bufferIn,256); //cleaning the storage
 check = read(serial_port, bufferIn, sizeof(bufferIn)); //read from the serial port
 if (check < 0) //checking the result
 error("ERROR reading from socket");

 if(bufferIn[0] == 0 && bufferIn[1] == 0x3b)
 printf("Adjust value on stage 1 axis x set to 0.\n");
 else
 printf("Adjust value on stage 1 axis x could'nt be changed.\n");

 close(serial_port);
 return 0;
}

